Homework 4

Due: Thursday, October 26, 2023, 1:30pm on Gradescope

Please upload your answers timely to Gradescope. Start a new page for every problem. For the programming/simulation questions you can use any reasonable programming language. Comment your source code and include the code and a brief overall explanation with your answers.

- 1. **10 pts** As we discussed in class, all symmetric square real matrices have real eigenvalues and *n* orthogonal eigenvectors.
 - a) (5 pts) Give an example of a square real matrix which has no real eigenvalues.
 - b) (5 pts) Give an example of a square real matrix whose eigenvectors cannot be chosen to be orthogonal.

2. (**10 pts**) Exercise 3.8 in text.

Exercise 3.8 (a) Let $[K] = \begin{bmatrix} 0.75 & 0.25 \\ 0.25 & 0.75 \end{bmatrix}$. Show that 1 and 1/2 are eigenvalues of [K] and find the normalized eigenvectors. Express [K] as $[Q\Lambda Q^{-1}]$, where $[\Lambda]$ is diagonal and [Q] is orthonormal.

(b) Let $[K'] = \alpha[K]$ for real $\alpha \neq 0$. Find the eigenvalues and eigenvectors of [K']. Do not use brute force – think!

(c) Find the eigenvalues and eigenvectors of $[K^m]$, where $[K^m]$ is the *m*th power of [K].

3. (15 pts) Missing Proofs from the KL Expansion Discussion

We will first prove the following preliminary results:

- (i) (1 pts) Prove that for two matrices $A \in \mathbb{R}^{n \times m}$ and $B \in \mathbb{R}^{m \times n}$, Trace(AB) = Trace(BA).
- (ii) (2 pts) Suppose $V \in \mathbb{R}^{n \times k}$, $k \leq n$, and $V^T V = I_k$, that is the columns of V are orthonormal in \mathbb{R}^n . (Note that V is not $n \times n$ so VV^T is not equal to the identity matrix.) Show that

$$||V^T \mathbf{a}||^2 \le ||\mathbf{a}||^2$$
 for all $\mathbf{a} \in \mathbb{R}^n$

By choosing the vector $\mathbf{a} = \mathbf{e}_i$, where \mathbf{e}_i is the *i*th column of the identity matrix, show that $0 \leq (VV^T)_{ii} \leq 1$ for all $1 \leq i \leq n$.

(iii) (1 pts) Given a non-negative integer k, and a positive integer $n \ge k$, let $P = \{\mathbf{x} = (x_1, \ldots, x_n) : 0 \le x_i \le 1, \sum_i x_i = k\}$ (P is the subset of the n-dimensional unit cube on which the coordinates sum to k.) Suppose $c_1 \ge \cdots \ge c_n$ are real numbers. Show that

$$\max_{\mathbf{x}\in P}\sum_{i=1}^{n}c_{i}x_{i} = \sum_{i=1}^{k}c_{i}$$

We will next turn to proving one of the claims we stated in the lecture. Suppose $K \in \mathbb{R}^{n \times n}$ is a real and symmetric matrix. We know that such a matrix can be written as $K = U\Lambda U^T$ where U is orthonormal and $\Lambda = \text{diag}(\lambda_1, \ldots, \lambda_n)$, with $\lambda_i \in \mathbb{R}$. Without loss of generality, assume that we have permuted the rows and columns of K so that $K_{11} \geq K_{22} \geq \cdots \geq K_{nn}$, and we have indexed the eigenvalues so that $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$.

- (a) (2 pts) Show that $\max_{\mathbf{v}\in\mathbb{R}^n:\mathbf{v}^T\mathbf{v}=1}\mathbf{v}^T K\mathbf{v} = \lambda_1.$
- (b) (2 pts) Show that $K_{11} \leq \lambda_1$.
- (c) (3 pts) Show that for any $k = 1, \ldots, n$,

$$\max_{V \in \mathbb{R}^{n \times k} : V^T V = I_k} \operatorname{Trace}(V^T K V) = \max_{V \in \mathbb{R}^{n \times k} : V^T V = I_k} \operatorname{Trace}(V^T \Lambda V) = \sum_{i=1}^k \lambda_i.$$

[Hint: You may find the preliminary results (i), (ii) and (iii) useful.]

(d) (2 pts) Show that for any $k = 1, \ldots, n$,

$$\sum_{i=1}^{k} K_{ii} \le \sum_{i=1}^{k} \lambda_i,$$

and that equality holds when k = n.

(e) (2 pts) Finally, we will connect the result we proved above to the notation we used in class. Let $V \in \mathbb{R}^{n \times k}$ be such that $V^T V = I_k$ as above. Let $\mathbf{Z} = [Z_1 \dots Z_k]^T = V^T \mathbf{X}$ where $\mathbf{X} \in \mathbb{R}^n$ is a random vector with covariance matrix $K_{\mathbf{X}}$. Show that

$$\sum_{i=1}^{k} \operatorname{Var}(Z_i) = \operatorname{Trace}(V^T K_{\mathbf{X}} V).$$

4. (15 pts) You are interested in estimating the *m* by *m* covariance matrix *K* of a *m*-dimensional random vector **X**. Your data is $\mathbf{X}_1, \mathbf{X}_2, \ldots, \mathbf{X}_n$, drawn independently from the same distribution as **X**. For simplicity, assume that all entries of **X** take values in the interval [a, b].

For simplicity we will first assume that \mathbf{X} has zero mean.

- a) (5 pts) Suppose m = 1, i.e. the data are scalars X_1, \ldots, X_n .
 - i. (2 pts) What does K become in this case?
 - ii. (3 pts) Propose an estimator \hat{K}_n of K, computed from the data, and show that it satisfies two properties:
 - It is unbiased, i.e. $E[\hat{K}_n] = K$.
 - \hat{K}_n converges in probability to K as $n \to \infty$, i.e. for any $\epsilon > 0$

$$\mathbb{P}(|K_n - K| \ge \epsilon) \to 0 \quad \text{as} \quad n \to \infty$$

- b) (5 pts) Now let us consider the general case for m > 1 while still assuming that **X** has zero mean. Propose an estimator \hat{K}_n of K and show that it satisfies two properties:
 - i. It is unbiased, i.e. $E[\hat{K}_n] = K$. (Recall that the expectation of a random matrix is just taking the expectation of each entry of the matrix.)
 - ii. Each entry of \hat{K}_n converges in probability to the corresponding entry of K as $n \to \infty$.
 - iii. \hat{K}_n converges in probability to K as $n \to \infty$. This means that all the entries of \hat{K}_n uniformly converge to the corresponding entries of K, i.e.

$$\mathbb{P}(\exists (i,j) \quad s.t. \quad |(K_n)_{i,j} - K_{i,j}| \ge \epsilon) \to 0 \qquad \text{as} \quad n \to \infty$$

- c) (5 pts) Now suppose X has non-zero mean and you do not know the mean.
 - i. (1 pts) Propose an unbiased estimator for the mean from the data. Show that your estimator is unbiased.
 - ii. (4 pts) Propose an unbiased estimator \hat{K}_n for K and show that it is unbiased. Hint: Assume that you first use the data to estimate the mean of \mathbf{X} and then use your estimate for the mean to modify the estimator you suggested in part (b). Check whether it is unbiased for m = 1 before looking at the m > 1 case. If it turns out to be biased, can you scale it by a small factor and make it unbiased?