
EE278 Statistical Signal Processing Stanford, Autumn 2023

Homework 4

Due: Thursday, October 26, 2023, 1:30pm on Gradescope

Please upload your answers timely to Gradescope. Start a new page for every problem. For
the programming/simulation questions you can use any reasonable programming language.
Comment your source code and include the code and a brief overall explanation with your
answers.

1. 10 pts As we discussed in class, all symmetric square real matrices have real eigenvalues
and n orthogonal eigenvectors.

a) (5 pts) Give an example of a square real matrix which has no real eigenvalues.

b) (5 pts) Give an example of a square real matrix whose eigenvectors cannot be
chosen to be orthogonal.
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2. (10 pts) Exercise 3.8 in text.
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3. (15 pts) Missing Proofs from the KL Expansion Discussion

We will first prove the following preliminary results:

(i) (1 pts) Prove that for two matrices A ∈ Rn×m and B ∈ Rm×n, Trace(AB) =
Trace(BA).

(ii) (2 pts) Suppose V ∈ Rn×k, k ≤ n, and V TV = Ik, that is the columns of V are
orthonormal in Rn. (Note that V is not n× n so V V T is not equal to the identity
matrix.) Show that

||V Ta||2 ≤ ||a||2 for all a ∈ Rn.

By choosing the vector a = ei, where ei is the ith column of the identity matrix,
show that 0 ≤ (V V T )ii ≤ 1 for all 1 ≤ i ≤ n.

(iii) (1 pts) Given a non-negative integer k, and a positive integer n ≥ k, let P = {x =
(x1, . . . , xn) : 0 ≤ xi ≤ 1,

∑
i xi = k} (P is the subset of the n-dimensional unit

cube on which the coordinates sum to k.) Suppose c1 ≥ · · · ≥ cn are real numbers.
Show that

max
x∈P

n∑
i=1

cixi =
k∑

i=1

ci.

We will next turn to proving one of the claims we stated in the lecture. Suppose K ∈
Rn×n is a real and symmetric matrix. We know that such a matrix can be written as
K = UΛUT where U is orthonormal and Λ = diag(λ1, . . . , λn), with λi ∈ R. Without
loss of generality, assume that we have permuted the rows and columns of K so that
K11 ≥ K22 ≥ · · · ≥ Knn, and we have indexed the eigenvalues so that λ1 ≥ λ2 ≥ · · · ≥ λn.

(a) (2 pts) Show that max
v∈Rn:vTv=1

vTKv = λ1.

(b) (2 pts) Show that K11 ≤ λ1.

(c) (3 pts) Show that for any k = 1, . . . , n,

max
V ∈Rn×k:V TV=Ik

Trace(V TKV ) = max
V ∈Rn×k:V TV=Ik

Trace(V TΛV ) =

k∑
i=1

λi.

[Hint: You may find the preliminary results (i), (ii) and (iii) useful.]

(d) (2 pts) Show that for any k = 1, . . . , n,

k∑
i=1

Kii ≤
k∑

i=1

λi,

and that equality holds when k = n.
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(e) (2 pts) Finally, we will connect the result we proved above to the notation we used in
class. Let V ∈ Rn×k be such that V TV = Ik as above. Let Z = [Z1 . . . Zk]

T = V TX
where X ∈ Rn is a random vector with covariance matrix KX. Show that

k∑
i=1

Var(Zi) = Trace(V TKXV ).
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4. (15 pts) You are interested in estimating the m by m covariance matrix K of a m-
dimensional random vector X. Your data is X1,X2, . . . ,Xn, drawn independently from
the same distribution as X. For simplicity, assume that all entries of X take values in
the interval [a, b].

For simplicity we will first assume that X has zero mean.

a) (5 pts) Suppose m = 1, i.e. the data are scalars X1, . . . , Xn.

i. (2 pts) What does K become in this case?

ii. (3 pts) Propose an estimator K̂n of K, computed from the data, and show
that it satisfies two properties:

• It is unbiased, i.e. E[K̂n] = K.

• K̂n converges in probability to K as n → ∞, i.e. for any ϵ > 0

P(|K̂n −K| ≥ ϵ) → 0 as n → ∞

.

b) (5 pts) Now let us consider the general case for m > 1 while still assuming that
X has zero mean. Propose an estimator K̂n of K and show that it satisfies two
properties:

i. It is unbiased, i.e. E[K̂n] = K. (Recall that the expectation of a random matrix
is just taking the expectation of each entry of the matrix.)

ii. Each entry of K̂n converges in probability to the corresponding entry of K as
n → ∞.

iii. K̂n converges in probability to K as n → ∞. This means that all the entries
of K̂n uniformly converge to the corresponding entries of K, i.e.

P(∃(i, j) s.t. |(K̂n)i,j −Ki,j | ≥ ϵ) → 0 as n → ∞

c) (5 pts) Now suppose X has non-zero mean and you do not know the mean.

i. (1 pts) Propose an unbiased estimator for the mean from the data. Show that
your estimator is unbiased.

ii. (4 pts) Propose an unbiased estimator K̂n for K and show that it is unbiased.
Hint: Assume that you first use the data to estimate the mean of X and then
use your estimate for the mean to modify the estimator you suggested in part
(b). Check whether it is unbiased for m = 1 before looking at the m > 1 case.
If it turns out to be biased, can you scale it by a small factor and make it
unbiased?
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